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The flow around a cylinder and a sphere rotating freely in a simple shear was 
studied experimentally for moderate values of the shear ReynoIds number Re. 
For a freely rotating cylinder, the data were found to be consistent with the 
results obtained numerically by Kossack & Acrivos (1974), at least for Reynolds 
numbers up to about 10. Rates of rotation of a freely suspended sphere were also 
obtained over the same range of Reynolds numbers and showed that, with 
increasing Re, the dimensionless angular velocity does not decrease as fast for 
a sphere as it does for a cylinder. In  both cases, photographs of the streamline 
patterns around the objects were consistent with this behaviour. Furthermore, 
it was found in each case that the asymptotic solutions for Re Q I derived by 
Robertson & Acrivos (1970) for a cylinder and by Lin, Peery & Schowalter (1970) 
for a sphere are not valid for Reynolds numbers greater than about 0.1, and that 
the flow remains steady only up to values of Re of about 6. 

1. Introduction 
A thorough understanding of the behaviour of small cylinders and spheres 

freely suspended in non-uniform flow fields is essential to the solution of many 
complex problems in suspension rheology. However, much of the experimental 
as well as the theoretical effort on this subject has been devoted to small values of 
the Reynolds number, thus leaving virtually unexplored the many effects 
resulting from the presence of large inertia forces in the system. In fact, in the 
case of steady linear shear flows, these inertia effects appear to have been con- 
sidered by only a few investigators, for example Bretherton (1962), Saffman 
(1965), Robertson & Acrivos (1970), Lin et d. (1970) and, most recently, Kossack 
& Acrivos (1974). 

The present study is an experimental investigation of the angular velocity and 
streamline patterns for both a circular cylinder and a small sphere each freely 
suspended and each placed symmetrically in a steady simple shear for values of 
the shear Reynolds number Re up to about 10. Robertson & Acrivos (1970) and 
Lin et al. (1970) treated this problem theoretically for Re < 1. For the case of a 
cylinder, Robertson & Acrivos obtained the fist-order correction term to the 
creeping-flow solution using the well-known technique of inner and outer 

t Present address : Aerotherm Division of AcurexCorporation, Mountainview, California 
94042. 
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u', = S'y'e, 

FIGURE 1. The unperturbed velocity field and the location of the cylinder 
or sphere in the flow (2' axis directed outward). 

expansions, while Lin et al. (1970) derived in a similar manner the corresponding 
solution for a sphere. 

Since most experimental studies reported to date have been confined to values 
of Re low enough for inertia effects to be negligible, it was felt that an experi- 
mental investigation of this problem for values of Re beyond the Stokes range 
was warranted. Owing to the appearance of flow instabilities, however, steady- 
flow experiments could be performed for Re only as high as about 10. None the less, 
the present study was undertaken in an attempt to determine the range of validity 
of the two previously mentioned asymptotic solutions as well as to obtain some 
insight into the effects of inertia for moderate Re. Since it was relatively easy to 
measure the angular velocity of a freely suspended cylinder or sphere immersed 
in a simple shear, this was the primary variable used in comparing the present 
experimental results with the two asymptotic solutions. In  addition, the data 
obtained here for the cylinder provided experimental confirmation of some of the 
theoretical results of Kossack & Acrivos (1974), who presented complete 
numerical solutions to the full two-dimensional Navier-Stokes equations for 
values of Re up to 70. Of course, since numerical solutions to the full equations for 
a sphere have not been obtained as yet, a comparison could not be made in this 
instance. Thus the changes with increasing Re in the angular velocity and in the 
streamline patterns observed here for a sphere constitute one of the major original 
results of this study. 

The physical system consists of an incompressible Newtonian fluid in steady 
simple shear flow past a neutrally buoyant, freely suspended cylinder or sphere. 
As depicted in figure 1, the cylinder or sphere (of radius a )  is placed symmetrically 
in the shear %ow and is allowed to rotate about the z' axis with angular velocity 
Qf = i2'es, ek denoting a unit vector along the k co-ordinate axis. The undisturbed 
fluid velocity is taken to be U& = S'y'e2, where IS" is the impressed constant rate 
of shear. The particle shear Reynolds number Re is then defined as Re = pSfu2/p, 
p being the density and p the viscosity of the fluid. In  terms of the dimensionless 
quantities 

r = r'la, u E u'lS'a, p = p ' /Kp ,  8 = Q'/S', s2 = Q'/S', 
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the steady Navier-Stokes equations in Cartesian co-ordinates take the form 

V . u  = 0, Reu.Vu = -Vp+V2u, (1.1 a, b) 

with boundary conditions 

u = -B x r = Q(yez-xe,) at Irl = 1, (1.2a) 

u+ye,,  p + O  as Irl +a, (1.2b) 

where, for a freely suspended particle, Q is determined by the condition of zero 
torque. The primary aim of the present study was to obtain experimentally the 
dependence of Q on Re and to photograph the streamline patterns in the vicinity 
of both a cylinder and a sphere for values of Re up to about 10. Before proceeding 
with a description of the shear-flow apparatus and the experimental programme, 
though, we discuss some of the important results from earlier studies so that a 
more meaningful comparison can be made with the present experimental findings. 

I n  treating the cylinder problem mathematically, it  is convenient to use 
cylindrical co-ordinates rand 0 (see figure I)  and to express the solution in terms 
of the two-dimensional stream function $ defined by 

ZC, = a $ p ,  U, = - a$/ar. 

Thus the steady Navier-Stokes equations and boundary conditions (1. I) and 
(1 .2) become 

$- = 0, a$jar = Q at r = 1, (1.4u, b)  

$+Qr2sin2e as r + m .  ( 1 . 4 ~ )  

The well-known Stokes solution to (1.3) and (1.4) for zero torque, given by 

$o = t ( r 2  - I) - t ( r2  - 2 + r2) cos 28, Qo = Q, (1.5a, b )  

the subscript zero denoting the solution for Re = 0, was first presented by 
Raasch (1961)’ and the predicted flow pattern verified experimentally for very 
small values of Re by Darabaner, Raasch & Mason (1967), Cox, Zia & Mason 
(1968) and by Robertson & Acrivos (1970). The Stokes solution (1.5) predicts that 
streamlines are either open or closed according to whether they lie outside or 
inside a so-called limiting streamline (cf. Cox et al. 1968). Theoretically, when 
Re = 0, the extent of this closed-streamline region is infinite. However, as pointed 
out by Robertson & Acrivos, the existence of a region of closed streamlines at 
distances far from the cylinder contradicts the uniform-shear boundary condition 
at infinity. Thus, in order to obtain a smooth transition between the flow near the 
cylinder and that far from the body, the inertia terms in (1.3) must somehow be 
properly taken into account. Robertson & Acrivos then computed the effect of 
fluid inertia to O(Re) on the stream function $ using the familiar technique of 
inner and outer expansions (of. Proudman & Pearson 1957) and obtained a 
solution to (1.3) and (1.4) valid for small but finite Re. The ‘inner’ solution, for 
1 < r < O(Re-t), was given as 

( 1 . 6 ~ )  $- = $o(r, 6’) + Reln Re 6’) +Re $&r, 0) + O(Re21nRe), 
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where $o is the Stokes solution (1.5a) and where the functions $, and 9F2 are the 
next (higher-order) terms of the expansion (see Robertson & Acrivos for the 
exact expressions). Moreover, for the freely suspended case, the angular velocity 
Cl was found to be 

Q = Qo[l-0.2886Re+O(Re21nRe)], (1.6b) 

where Qo = +. This expression clearly indicates that the inclusion of inertia 
effects in the analysis leads to a rotation rate lower than that given by the 
Stokes solution (1.5b). 

It is easy to show now that, if the stream function (1.6a) is evaluated for some 
small Re, the resulting streamline pattern will differ significantly from that of the 
Stokes solution. Specifically, the region of closed streamlines will be finite rather 
than infinite in extent and will be followed, on either side, by a recirculating wake. 
Also, as the Reynolds number is increased, one would expect this region of closed 
streamlines to become smaller and the limiting streamline to move closer to the 
surface of the cylinder. Indeed, this was confirmed by Kossack & Acrivos (1974), 
who obtained complete numerical solutions to the full equations (1.3) and (1.4) 
for values of Re up to 70. They found that even for moderate values of Re ( N 1) 
the flow is dominated by inertia effects and that its structure bears little resem- 
blance to the solution for Re = 0. It is also evident from (1.6b) that Q should be 
expected to decrease monotonically with Re as the Reynolds number is increased. 
Eventually, however, as Re -+ co under laminar flow conditions, one might expect 
the angular velocity to approach zero asymptotically and the cylinder to become 
stationary. This was borne out by the calculations of Kossack & Acrivos, who 
found that Q became of order Re-4 when Re 

In  the case of simple shear flow past a freely suspended sphere, the well-known 
Stokes solution to (1.1) and (1.2) is given by 

10. 

u 0 = y  1----  ' 522( 1 - -  :)I e,+x [ ir: if:( I - -  :2)] e 2/ + z  [ -- :!( 1-- e,, [ 2r5 2r5 

(1.7a) 

po = - 5xy/r5, Qo = 4, (1.7b7c) 

the subscript zero again denoting the solution for Re = 0. Equation ( 1 . 7 ~ )  has 
been verified experimentally by Trevelyan & Mason (1951) for very small values 
of the Reynolds number and by Kohlman (1963) for Re up to 0.25. Also, a detailed 
analysis of the nature of the streamline pattern, as obtained from (1.7a),  was 
undertaken by Cox et al. (1968), who found, as in the case of the cylinder, the 
existence of both open and closed streamlines, separated, in this case, by a 
limiting three-dimensional surface. These findings were then confirmed experi- 
mentally in a Couette-flow device for Re = O(10v4). 

Lin et al. (1970) determined, to O(Ret), the effects of fluid inertia on the velocity 
and pressure fields in the vicinity of a sphere freely suspended in a simple shear. 
Again, the technique of inner and outer expansions was used to obtain a solution 
to (1.1) and (1.2) valid for small but finite Re; i.e. 

u = uo + Reu, + R e h ,  + o(Rel), 

p = po -!-Rep, + ReQp, + o(ReQ), 

(1.8a) 

(1.8b) 
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where u, and p ,  are the Stokes solutions (1.7 a, b )  and ul, u2, p1 andp2 are the next 
(higher-order) terms of the expansions (see Lin et al. for these expressions). In  
addition, from the free-suspension boundary condition (zero net force and 
torque), the angular velocity of the sphere was found to be 

i2 = i2,[1- 0.3076Re9 +o(Re+)], ( 1 . 8 ~ )  

where Q0 = +. As in the case of the cylinder, this result indicates that the inclusion 
of inertia effects in the analysis leads to a lowering of the rotation rate from that 
given by the Stokes solution ( 1 . 7 ~ ) .  Of course this is not surprising, since one 
would expect the solution for a sphere to behave in much the same way as that 
for a cylinder, the main difference being in how fast the angular velocity decreases 
with increasing Re. The present experimental programme will show that i2 does 
not decrease as fast for a sphere as for a cylinder when the Reynolds number is 
increased. Again, it should be noted that the inner solution (1.8) is valid only in a 
region near the sphere, i.e. for 1 < r < O(Re-8) as Re  asymptotically approaches 
zero. 

Since no work comparable to that of Kossack & Acrivos (1974) exists for a 
sphere, predictions concerning the streamline pattern for Reynolds numbers 
beyond the Stokes range cannot be made with certainty. However, for non-zero 
values of Re, one would expect the streamline pattern for a sphere, a t  least in the 
z’ = 0 plane, to be very similar to that for a cylinder. Photographs presented 
below will indeed confirm this, at least for values of Re  up to about 10. 

A description of the shear-flow apparatus and its performance characteristics 
at  moderate Reynolds numbers is presented in the next section. The experiments 
were conducted with the equipment used by Robertson (1969) in his investigation 
of Stokes flow around a cylinder in a simple shear. However, owing to the presence 
of secondary flows as well as flow instabilities, Reynolds numbers only as high as 
about 10 could be achieved with this device. 

Section 3 contains the results of an experimental investigation of the flow 
around a cylinder and a sphere, each freely suspended in a steady simple shear. 
Photographs of the streamline patterns near the surface of the objects and 
measured rates of rotation are presented for Reynolds numbers in the range 0 5  
to about 10. The experimental findings are then compared with the available 
theoretical predictions. Incidentally, streamline photos are also presented for 
the case SZ = 0 [see (1.2a)], i.e. when the cylinder or sphere is stationary. 

2. The shear-flow apparatus and its performance at moderate 
Reynolds numbers 

Of the several types of device used for generating shear flows, two seem to have 
been used rather frequently over the past few years. One, the cylindrical Couette 
device, which produces a shear field in the annular region between two concentric 
cylinders rotating in opposite directions, has been employed quite extensively, 
most notably by S. G. Mason and co-workers (starting in 1951). One of the 
disadvantages of this type of design, however, is that the radial distribution of 
shear is not exactly a constant; hence, to approximate closely a constant shear 

39 F L M  72 
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FIGURE 2. Top view of a ‘parallel-band’ shear-flow apparatus showing the 
undisturbed velocity profile. 

flow, the gap between the cylinders must be so small that wall effects become 
significant for anything larger than microscopic particles. Thus, with this type of 
device, studies at Reynolds numbers beyond O( 1) are rather difficult to perform. 
On the other hand, shear-flow devices employing a ‘ parallel-band’ design seem to 
be somewhat more versatile. One such example is shown schematically in figure 2. 
In  this case, a simple shear is generated by the movement of two bands which in 
turn are driven by two sets of rotating pulleys at either end of the apparatus (cf. 
Taylor 1934; Kohlman 1963). Clearly this design has some distinct advantages 
over the concentric-cylinder design. For example, the shear rate between the 
bands is here constant, and such a device can easily be designed to provide a 
variable gap width without forsaking the requirement of a constant shear. 
However, as will presently be demonstrated, there are also several disadvantages 
to this ‘parallel-band’ type of design. 

2.1. The shear-$ow apparatus 
The present experimental programme was conducted with the ‘ parallel-band ’ 
device used previously by Robertson & Acrivos (1 970) in their investigation of 
Stokes flow arounda cylinder in a simple shear. This apparatus consists principally 
of a large tank of fluid in which a system of belts and pulleys driven by two vari- 
able-speed motors is immersed. Thus a flow identical to the one depicted in figure 
2 is generated. Furthermore, the entire belt and pulley assembly is supported in 
such a manner as to permit free movement in the transverse direction, thereby 
providing a continuously variable gap width. Since a great deal of flexibility was 
incorporated into the original design, no main modification of the equipment was 
required for the purposes of the present study. The only change involved the 
addition of two more belt supports on the outside segment of each belt in order to 
prevent further sagging and bowing. Details of the design and construction of the 
rest of the shear apparatus are described by Robertson (1 969). 

Before proceeding with the experimental programme, it was essential to 
investigate the nature of the flow between the two belts and to assess the effects 
of the tank geometry on the production of the experimentally measured velocity 
profiles while operating at Reynolds numbers beyond the Stokes range. For 
example, since the velocity has to be linear and two-dimensional (i.e. no vertical 
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velocity gradients present) over a major portion of the test channel, the effects of 
the end walls, the belt gap width, the belt speed, the depth of the tank, boundary 
layers on the belts, possible flow instabilities and regions of secondary flow near 
the pulleys all had to be thoroughly investigated. 

2.2. Bluid properties 
Care was taken in the selection of a suitable fluid for use in these experiments. 
Since i t  was desirable to operate the shear tank a t  as high a Reynolds number as 
could reasonably be obtained, water seemed an obvious choice. However, for a 
kinematic viscosity of IcS, the shear rate beyond which the thickness of the 
boundary layer on each belt becomes less than half the channel gap width was 
estimated to be approximately equal to the minimum rate of shear below which 
the cylinder or sphere cannot freely rotate about its wire support (see $ 3  for a 
detailed discussion of the test objects and support assembly). Also, it  was 
desirable to take photographs of streamline patterns but was difficult to find 
tracers which, in water, could travel a reasonable length of the channel and still 
not rise, fall or disappear over the time scale involved (hydrogen bubbles failed 
t o  work). Hence a fluid was needed which was more viscous than water and which 
could easily support a suitable tracer. 

A n  insulating oil manufactured by the Chevron Chemical Company and usually 
used in transformers, etc., was finally selected as the test fluid. It has a kinematic 
viscosity of about 17cS at  room temperature and is transparent and aImost 
colourless, thus being quite suitable for photographic purposes. 

2.3. Experimental procedure 

Of primary interest with reference to the present set of experiments was the 
development of a steady simple shear flow having no mean velocity at the centre 
of the channel. Thus the belts were run with equal but opposite velocities as 
shown in figure 2. (Primed quantities are dimensional.) The belts are separated by 
a distance H and are taken to move in opposite directions with speed U,. The 
velocity profile u'(y') set up by such a flow can then be expressed as 

u'(y') = (2UB/H) y'. (2.1) 

(2.2) 

Ideally, one would like to obtain this flow throughout the length of the channel; 
however, owing to equipment limitations, this is not always possible. The rest 
of this section is devoted to investigating the degree to which a simple shear as 
given by (2.1) can be produced in the tank. 

Several dimensionless groups will prove useful in characterizing the flow in the 
test channel, which depends on the values chosen for the two length scales. For 
the  empty tank, a shear Reynolds number Be,, based on the channel half-width 
+ H ,  is defined as 

Thus the dimensional rate of shear S' is given by 

8' E du'ldy' = 2U,/H. 

Re, = A S ( & H ) ~ / U  = U,H/Bu. (2.3) 
39-2 
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Also, the aspect ratio A ( = L/H, where L is the centre-to-centre pulley distance) 
is important in determining the nature of the flow in the empty test section. 
Furthermore, with a cylinder or sphere in the channel, a shear Reynolds number 
Be, based on the particle radius a, can be defined as 

Re = S'a2/v = 2UBa2/Hv. (2.4) 

We also note that Re = Re,K2, where K = 2alH. The parameter K will become 
important later when the effects of the wall on the rotation of and flow around the 
test object are examined. 

In order to minimize bottom effects, the tank was partly filled with 250 gallons 
of de-ionized water, on top of which was floated a 200 gallon layer of the insulating 
oil (about 9iin. deep). Also, we adapted much of the equipment and procedures 
described by Robertson & Acrivos (1970) to obtain photographs of the streamlines 
as well as velocity profiles (for further details, see Poe 1975). 

Several types of tracer were considered for use in the photographic work. Very 
tiny air bubbles were judged unsuitable since they rose too quickly in the rather 
low viscosity oil. Various brands of plastic particle were then carefully examined. 
A polypropylene product called ' Hercoflat ', manufactured by Hercules Chemicals 
and usually used for texturing and adding pigment to industrial coatings, was 
found to be quite satisfactory for use as a tracer in the present experiments. 
Hercoflat no. 1200, having an average particle size of about 200pm, was the 
smallest particle visible on the photographic films used here. Also, the settling 
velocity of these particles (specific gravity about 0.9) was quite small. They 
settled to the bottom of the oil only after a period of about 12 h. 

The camera was mounted at the top of the shear tank, and pictures were taken 
of the flow between the two moving belts. Tracer particles were first introduced 
into the channel and illuminated a t  right angles to the camera by two flashing 
stroboscopes situated at the end windows of the tank. Using exposure times of 
about half a minute and the flashing strobes as the only illumination, a photo- 
graphic tracing of the streamlines was recorded on film. The resulting pictures 
were very similar to figure 2 of Robertson & Acrivos (1970), who used a much 
larger channel width ( H  = 21.25in.) and a much more viscous oil (Y = 325cS at 
room temperature), and revealed the existence of a recirculating flow region near 
the centre-line of the test section. As Robertson & Acrivos point out, this 
behaviour is partly due to the fact that the shear tank is of finite length and has 
two solid walls a t  either end, which force some of the fluid passing through the 
channel to return and flow through the section again. Also, the large centrifugal 
forces found near the pulleys might be expected to, effectively, partly block off the 
ends of the channel, thus confining the flow even further. It is clear, though, that 
the width of this recirculating region should definitely decrease upon decreasing 
the gap width H .  Thus, since a gap width of 6 in. or less was to be used here, it was 
hoped that the flow in the narrow recirculating region would not be strong enough 
to disrupt the planned experiments. However, as will be seen later on, this 
recirculating region did in fact affect the outcome of some of the experiments. 
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FIGURE 3. Tank shear Reynolds number v8. channel aspect ratio showing the various flow 
regimes in the empty channel: - - - , boundary between linear and nonlinear velocity 
profile; -, boundary between presence and absence of Goertler vortices. 0, Robertson 
(1969); A, Kohlman (1963); 0, present study. 

Belt gap Channel aspect 
width, H ratio, A f LIH 

(in.) ( L  = 79in.) Re,, = ReT(2a/H)a 

19.8 
13.1 
6.0 
2.81 
2.7 
1.58 
1.0 

4.0 
6.0 

13.2 
28.1 
29.3 
50.0 
79.0 

0.05 
0.2 
1.2 
7-6  
8.2 

17 
26 

TABLE 1. Values of Re-, 

2.4. The velocity projile of th undisturbedjbw 

A large number of experiments were performed to determine the conditions under 
which the velocity profile in the centre of the empty channel, i.e. in the absence 
of the cylinder or the sphere, conformed to (2.1). As expected, a linear profile was 
achieved only as long as Re, remained below a ' critical' value. This critical value 
Re$ was found to depend on the aspect ratio A. I n  addition, however, a clearly 
defined secondary vortex flow pattern was observed at the higher belt speeds. 
This originated near the pulleys and was identified as being due to the generation 
of Goertler vortices. Of course, it is well known that instabilities leading to 
secondary motion can arise in flow past a stationary concave wall (cf. Taylor 
1923; Dean 1928; Goertler 1940,1941), but the same type of disturbance can also 
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occur in the case of a convex wall moving through a stagnant fluid (as in the 
present study). In  fact, linear stability analysis yields identical disturbance 
equationsin both cases (see Lin 1966, pp. 96ff.; Chandrasekhar 1961, pp. 318ff.). 

In  our set-up, these Goertler vortices were formed near the pulleys and 
immediately carried downstream by the primary flow between the belts. In  fact, 
these vortices were clearly visible near the centre of the channel for values of U, 
greater than about 5.5 cm/s. Thus, a second ‘critical’ Reynolds number Re$ 
(which by definition is obviously proportional to H )  can be computed from this 
‘critical’ value of 27,. 

The data from the present experiments together with the earlier results of 
Robertson (1969) and of Kohlman (1963) were used to construct figure 3, which 
delineates four distinct flow regimes in the empty tank. Clearly, however, one 
could be assured of obtaining a truly two-dimensional simple shear as given by 
(2.1) only if the tank were operated within the shaded portion of figure 3, and 
hence the experiments to be described in the next section were performed with 
values of Re, mainly confined t o  this region. For the sake of completeness, we 
report in table 1 the maximum particle Reynolds number Remax, based on the 
radius a of the test object [cf. (2.4)], beyond which it would have been undesirable 
to operate the channel for the reasons explained above. A particle radius of 
0.25 in. was used in calculating the values of Remax in table 1. Since 1.58in. is the 
minimum value of H which the present shear-flow apparatus allows, we con- 
cluded that Re = 17 is the maximum particle shear Reynolds number that could 
be attained with the present system without forsaking the linearity of the velocity 
profile or the absence of secondary motions between the belts. In  order to achieve 
a higher value of Remax at any given H ,  we would have had to  design an apparatus 
having a greater channel length L (79 in. here) and/or a larger pulley diameter 
(about 4 in. here). 

3. Simple shear flow past a cylinder and a sphere freely rotating 
at moderate Reynolds numbers 

3.1. Rates of rotation 
The cylinder and its support assembly are shown in figure 4. The cylinder itself 
was an 8 in. section of 4 in. O.D. polypropylene tubing having a wall thickness of 
+in. As shown in figure 4, two tightly fitting a in. O.D. Delran plugs, through which 
0.012 in. diameter holes had been drilled, were inserted in each end. The cylinder 
was allowed to rotate about a tightly stretched length of nickel wire (20Opm in 
diameter) which passed through the central holes in the Delran plugs. In  antici- 
pation of the need to be able to remove these plugs, two holes &in. in diameter 
were drilled and threaded in the top plug. During an experiment, these holes were 
sealed with two machine-made plastic screws. Then, to remove the top plug, the 
two plastic screws were replaced by 1 in. long stainless-steel screws, which acted 
as a handle with which to pull out the plug. 

The wire support assembly and its location in the shear tank are also shown in 
figure 4. An 6 in. thick 8 x 8 in. piece of lucite was supported over the centre of the 
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200 pm diameter 
nickel wire 

Delran screi 
fd;nme+even,nA 0.25 in. O.D. Delran plug 

Brass washer 

Aluminium support 

I /Rubbe<l Nickel. \ 

O.D. polypropylene I \ 

' din. 
Scale: - 

FIUURE 4. Cylinder assembly and its location in the shear-flow apparatus. 

channel by an aluminium bar spanning the width of the tank. The nickel wire, 
which had been passed through the cylinder, was inserted through this lucite 
plate and secured on top with a tiny brass washer. The other end of the wire 
passed through a rubber stopper which had been inserted in a hole *in. in 
diameter in the bottom of the tank. The wire was then stretched tightly by 
hanging a lead weight from its end. 

Unfortunately, the cylinder was not only free to rotate about the wire axis, but 
was also free to slide up and down the wire. In  order to prevent this from occurring 
during an experiment, the following procedure was adopted. The hollow portion 
)in. in diameter inside the cylinder (see figure 4) was partially filled with oil. Since 
the density of the cylinder assembly (0.916 g/cm3) was slightly greater than that of 
the oil, the cylinder would immediately slide down the wire and come to rest in 
the water layer if its interior were completely filled. Hence, by only partially 
filling the cylinder interior (ie. by leaving some air inside it), one could easily 
regulate the depth a t  which the cylinder came to rest. However, since oil slowly 
seeped into the interior through the two central holes at  the top and bottom, the 
cylinder did eventually slide down the wire and partly floated in the water. But 
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H = 2.81 in. - 
Re 2Q 

0.491 0.915 
0.856 0.890 
0.878 0.873 
1.43 0-845 
1-45 0-857 
1.91 0.812 
1.97 0.822 
2.47 0,770 
3.57 0.696 
4-36 0,624 
5.60 0.622 
6*36* 0.602 
7+54* 0.498 
8.27*t 0.472 
9*84*t 0,400 

H = 2.70in. 

Re 2Q 
1-50 0-832 
2.02 0.799 
2.28 0.775 
4.00 0.678 
5.74 0.580 
7.49* 0.51 1 
8*88*t 0.464 

TABLE 2. Values of 2Q for the cylinder 

H = 1.58i.n. - 
Re 2n 
3.87 0.657 
5.61 0.618 
6*77* 0,592 
8.53* 0.503 
9-75* 0.528 

11*5* 0.565 
12-4* 0-585 
14*7* 0.555 
18*2*t 0.513 
21*1*t 0.456 

this occurred over a period of 1-2 h and hence there was ample time to obtain 
measurements and photographs while the cylinder remained totally immersed 
in the oil layer. 

The effect of the wire and the presence of both air and oil in the interior of the 
cylinder had to be properly taken into account when calculating the angular 
velocity from the measured rate of rotation. However, a torque balance on the 
interior cylinder assembly showed that these effects were entirely negligible and 
that no significant corrections were needed when calculating the angular velocity. 
With the cylinder spanning almost the entire depth of the oil layer, it  was expected 
that the effect of its finite length on the measurements would also not be very 
significant. Of course, all these effects remained to be tested. 

A similar set-up was also used for the sphere (Poe 1975). 
Only three gap widths were used in this set of experiments: H = 2*81,2.70 and 

1-58in. The belt speed 77, was varied from 0.27 to 7*0in./s, while the shear rate 
s' ranged from 0.2 to 8.9 s-1. The kinematic viscosity of the oil was always found 
to lie between 14 and 20 cS, while the particle shear Reynolds number Re, com- 
puted from (2.4), varied from about 0-5 to 20. The angular velocity Q was deter- 
mined by measuring the time (A t )  required for the particle to make N revolutions. 
Five to fifteen measurements of N/At were made at  each Reynolds number, and 
the average value was used in calculating Q (the standard deviation was generally 
1-2% in each case). Summaries of the experimentally determined 0 ' s  are 
reported in table 2 for the cylinder and in table 3 for the sphere. 

Some unusual behaviour was noticed when operating the belts at particle 
Reynolds numbers greater than about 6 or 7. Both the cylinder and the sphere 
were observed to rotate rather unevenly, i.e. one could actually detect the objects 
speeding up and slowing down by simply observing the rotating motion of a 
black dot painted on them. Obviously, a t  these values of Re, significantly different 
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H = 2.81 in. H = 2.70in. H = 1.58in. - - - 
Re 2 a  Re 2Q Re 2Q 

0.780 0.976 5.32 0-803 3-82 0.825 
0.793 0.943 6-31* 0.837 5.48 0.835 
0.803 0.954 6*94* 0.765 @61* 0.821 

1.31 0-970 947* 0.827 
1-33 0.962 12*4* 0.837 
1.65 0-945 14.7* 0.821 
1.77 0.933 18.2*? 0.785 
1-80 0.923 21*l*t 0.794 
1.93 0.921 
2-08 0.907 
2.69 0.905 
2.98 0.885 
3.26 0.865 
3.50 0.844 
3.59 0.861 
4.15 0.837 
4-55 0.845 
4.77 0.836 
5-14 0.824 
5-19 0.852 
5.68 0.843 
6*11* 0-880 
6*23* 0.877 
6*56* 0.867 
6*69* 0.813 
7-73*t 0.728 
7.91*7 0-643 

1-23 0.935 8.23*t 0-760 &38* 0.811 

TABLE 3. Values of 2Q for the sphere 

values of N/At  could be measured depending on when the measurements were 
taken and on how large a value of N was used. Hence a considerable amount of 
scatter was found in the data. For these tests (marked with an asterisk in tables 2 
and 3), the standard deviation in the 2!2 values jumped to 

Also, as discussed in an earlier section, for a given gap width H ,  there was a 
maximum value of Re (denoted by Remax) below which one was assured of having 
a linear profile in the centre of the test section and no secondary flow (see table 1). 
For H = 2.81, 2.70 and 1.68in., Remax was found to be equal to 7.6, 8.2 and 17, 
respectively. Some of the data in tables 2 and 3 were obtained at  Reynolds 
numbers above these values. These tests are marked with a dagger. 

3-10 %. 

3.2. Discussion and comparison with theory 
The results presented in table 2 are plotted in figure 5 and those in table 3 in 
figure 6. Those data having both an asterisk and a dagger beside them in tables 2 
and 3 are plotted here as diamonds, while those having only an asterisk are denoted 
by squares in these graphs. Open circles are used for the remainder of the data. 

It may be seen in both figure 5 and figure 6 that, for Re > 6, the scatter in the 
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Reynolds number, Re = 2UBa8/Hv 

FIGURE 5. Angular velocity ws. Reynolds number for a freely rotating cylinder in a simple 
shear. - - -, 2Q -+ 1 - 0.289Re as Re -+ 0, Robertson & Acrivos (1970) ; A ,  - -, Kossack & 
Acrivos (1 974) ; 0, 0, 0, -, present experiments. 

0 1 2  3 4 5 6 7 8 9 10 11 

Reynolds number, Re = ~ U B C J ~ ~ H V  

FIGURE 6.  Angular velocity ws. Reynolds number for a freely rotating sphere in a simple 
shear. --- , 2 0  -+ 1-0.308Re~ as Re -+ 0, Lin et al. (1970); 0, 0, 0. -, present 
experiments. 

experimentally obtained values of 2Q is considerably greater than for Re < 6 .  
In  addition, as discussed earlier, since both the cylinder and the sphere were 
observed to rotate rather unevenly beyond Re - 6, different values of C2 could 
be obtained depending upon when a measurement was taken and how many 
revolutions were used in a test. Also, in both cases, this uneven rate of rotation 
was found to correspond to  unsteady motion; i.e. there was no regular pattern 
to the speeding up and slowing down of the rotating cylinder or sphere. In  fact, 
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photographs taken of the streamline patterns around the object (to be discussed 
later) revealed that, in both cases, beyond R e  N 6 the two wakes found on either 
side of the object behaved, a t  times, in an unsteady fashion; i.e. these wakes 
tended to oscillate about the imaginary centre-line of the channel in an irregular 
manner. These observations suggest that the motion about a cylinder or sphere 
freely rotating in a simple shear is steady only up to a Reynolds number of 
about 6. 

It may also be seen from figure 5 that, for R e  < 5, the experimentally deter- 
mined curve of 2!2 us. R e  agrees rather well with the curve obtained by con- 
necting the data of Kossack & Acrivos (1974),t who computed numerical solu- 
tions to the full Navier-Stokes equations for a freely rotating cylinder in a simple 
shear. However, for values of R e  greater than about 5, the experimental curve is 
seen to deviate slightly from that derived numerically. One possible explanation 
for this deviation is described below. 

As discussed at  the end of $2.3, the narrow recirculating flow region found in 
the empty channel may cause a slighb increase in the rate of rotation of the 
cylinder at  the higher Reynolds numbers, since as the belt speed 77, is increased, 
the large centrifugal forces acting on the fluid flowing around the pulleys, 
effectively, partly block off the ends of the channel, thus confining the flow even 
further. Photographs taken of the flow near one of the pulleys in order to test 
this revealed that the amount of fluid completely bypassing the channel increased 
as the belt speed was increased. Thus the two ends of the channel were, for the 
most part, blocked off and a rather wide recirculating flow was observed at these 
locations, even though photographs taken near the centre of the channel showed 
that the width of this recirculating flow region was much less and that the velocity 
profile was indeed linear. 

For the same reason, one might also expect the values of 2!2 for the sphere 
shown in figure 6 to be slightly high for R e  > 5. However, since results similar to 
those of Kossack & Acrivos (1974) do not exist for the sphere, no other data are 
available for the purposes of comparison, Nevertheless, this point should be kept 
in mind when dealing with the data taken beyond Reynolds numbers of about 5. 

An additional factor to consider is the close proximity of the two walls to the 
surface of the body and its effect on the rate of rotation of the cylinder or the 
sphere. In  the present experiments, the parameter K ( = 2 4 H )  ranged from 0.18 
to  0-32. For R e  < 1, Ho & Leal (1974) found that a small sphere placed in a simple 
shear between two walls rotates with the vorticity of the fluid to within a very 
small correction, O ( K ~ )  for K 1, which would be negligible in our case. However, 
since no analysis comparable to that of Ho & Leal exists for values of R e  beyond 
the Stokes range, predictions concerning the wall correction for !2 cannot be 
made for R e  + 0. Nevertheless, upon examining the data given in tables 2 and 3, 
one finds, in both cases, that for a fixed value of R e  (<  6) the value of SL at 
one gap width H is not significantly different from its value at  another H .  
Hence, for R e  up to about 6, the wall effect on Q appears to be small, at least for 
values of K up to 0.32. 

In figure 5, the numerically computed value of 2Q at Re = 3.0 was obtained Iater by 
Kossaok (private communication). 
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Another point to consider is that the disturbance to the primary flow caused by 
freely suspending a sphere in the centre of a simple shear flow is expected to be 
smaller than that resulting from an ‘infinitely’ long cylinder of the same diameter. 
This if3 borne out by comparing the data in figures 5 and 6, from which it is seen 
that, with increasing Re, S l  does not decrease as rapidly for the sphere as it does 
for the cylinder. In fact, in the case of the sphere, 2Q remained larger than 0.5, 
even for values of Re as high as 10. 

Also shown in figures 5 and 6 are the asymptotic solutions for Re 4 1 obtained 
analytically by Robertson & Acrivos (1970) for a cylinder and by Lin et al. (1970) 
for a sphere. In both cases, it is immediately clear that beyond a Reynolds 
number of about 0.1 these analytic solutions no longer agree with the experi- 
mentally determined values of a. 

3.3. The streamline patterns 

Photographs of streamline patterns around the cylinder and the sphere were 
obtained using the illumination technique described in § 2.3. Except when noted, 
all photographs were taken 3 in. below the top surface of the oil. 

A typical photograph of the flow around a freely rotating cylinder is shown in 
figure 7 (plate 1 ) ,  where the halo effect was caused by the reflexion of light from 
the two flashing strobes off the white surface of the cylinder. Also, owing to the 
close proximity of the top end of the cylinder to the camera lens, the cylinder 
sometimes looked out of focus. Still, a large portion of the streamline pattern was 
clearly visible in most of the photos. 

Pigure 8 (plate 1 )  depicts the flow around a freely rotating sphere. Photos were 
taken only in the mid-plane of the sphere, since the streamlines above and below 
this plane are three-dimensional. The quality of the photos here was generally 
much better than in the case of the cylinder, owing to the decreased amount of 
light reflected off the smaller surface of the sphere. 

Besides the fact that each body is surrounded by a region of closed streamlines, 
the most striking feature of both photos is the presence of two stagnation points 
followed on either side of the body by two recirculating wakes. Owing to the 
extremely slow motion in the neighbourhood of a stagnation point, it was some- 
times very difficult to obtain photographs of tracer particles in these regions; 
nevertheless one could easily discern the locations of the stagnation points in 
most of the photos. 

In  order to obtain a quantitative comparison between the experimental results 
found here for the cylinder and the numerical predictions of Kossack & Acrivos 
(1974), the distance r, from a stagnation point to the centre of the cylinder was 
measured on those photos where such a point was clearly visible. These results 
were then plotted (see figure 9) and compared with the curve obtained by con- 
necting the numerically found values of Kossack & Acrivos. Although data were 
not taken over the entire range, it is clear from figure 9 that there is fairly good 
agreement between the two sets. Also shown for comparison is the asymptotic 
expression for Re < 1 : 

r, -t 1-127Re-~( l+  O[Re(ln Re)2])  as Re -+ 0, 
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Reynolds number, Re = 2 U ~ a ~ l H v  

FIU~RE 9. Stagnation-point location for a freely rotating cylinder in a simple shear. 
- - -, r8 - 1 3 1.127Re-4 - 1 as Re --f 0, Robertson & Acrivos (1  970) ; A ,  -, Kossack t 
Acrivos (1974); 0, present experiments. 
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FIGURE 10. Stagnation-point location for a freely rotating sphsre in a simple shear. - - -, 
rS- 1 -+ 1*034Re-i%- 1 as Re -+ 0, Lin et al. (1970); 0, O,O, -, present experiments. 

which was derived (Poe 1975) from the analytic soIution of Robertson & Acrivos 
(1970). 

The corresponding measurements of r, for the sphere are plotted in figure 10, 
together with the asymptotic expression 

r, + 1.034Re-3%[1+ O(Re%)] as Re + 0 

derived by Poe (1975) from the analytic solution of Lin et al. (1970). Since it was 
found previously that, with increasing Re, !2 did not decrease as rapidly for the 
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sphere as it did for the cylinder, one would expect that, likewise, the stagnation 
point would not approach the surface as rapidly for the sphere as for the cylinder. 
It is clear from the experimental curves in figures 9 and 10 that this is indeed the 
case. 

Streamline photos were also taken for the case 0 = 0, using the technique 
described earlier. The cylinder was held stationary by attaching to the wire two 
small weights, one just above and the other just below the cylinder. With the 
two weights pressed against its top and bottom, the cylinder could not rotate. 
The sphere was similarly fixed. Generally, the quality of the photos was not as 
good as that found previously; none the less one could still discern the main 
features of the flow pattern from most of them. Two of these photos are presented 
in figures 11 and 12 (plate 2 ) .  For both the cylinder and the sphere, one finds, in 
this case, a complete absence of closed streamlines and the presence of four 
stagnation points, all lying on the surface of the body. These stagnation points 
are partially visible in the photographs presented here. 

This work was supported in part by the National Science Foundation under 
grant NSF-GK-41781. The oil used in the experiments was generously donated 
by the Chevron Chemical Company. 
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FIGURE 7 .  Shear flow past n freely rotating cyliuder: 
H = 2.70 m., U, = t.27 in./a, Re = 2.28. 

FIGURE 8. Shear flow past D freely rotatirig sphere: 
H = 2.81 in., UB = 3.19 in.]s, He = 5.13. 

P O E  AND ACRIVOS (Faciacilzg p .  624) 
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FIGURE 11. Shear flow past a stationary cylinder: 
H = 2.70 in., U, = 1,21 in.\s, Re = 2.22. 

FIGURE 12. Shear flow past a stationary sphere: 
H = 2.10in., UB = 1.21 in.ls, Re  = 2-14. 

Plate 2 


